5.9. Konvergente Reihen
In diesem Abschnitt studieren wir reelle Folgen einer speziellen Bauart, die sog. Reihen. Ihre Folgenglieder entstehen iterativ durch Aufsummieren vorgegebener Zahlen. Zwar sind Reihen in diesem Sinn ebenfalls "nur" Folgen,
dennoch kommt den Reihen eine besondere Stellung zu: Sie liefern die technische Grundausstattung zur Einführung der analytischen Funktionen, einer äußerst wichtigen Funktionenklasse. Bereits in diesem Abschnitt führen wir drei dieser Funktionen ein,
die Exponentialfunktion, den Sinus und den Cosinus.
Definition: Ist eine Folge in , so heißt die Folge
|
[5.9.1] |
die zu gehörige Reihe.
|
Beachte:
Die Verwendung von Folgen mit Startindex 0 ist technisch begründet und insbesondere bei den sog. Potenzreihen in Abschnitt 11 von Vorteil.
Natürlich nennen wir die Folge ebenfalls eine Reihe.
Da der Startindex k bereits im Reihenterm ablesbar ist, verzichten wir bei Reihen auf die ausführliche Schreibweise .
Definitionsgemäß ist jede Reihe eine Folge. Umgekehrt läßt sich über die Festsetzung
jede Folge als Reihe schreiben:
|
[5.9.2] |
Eine Reihe, die eine Darstellung wie in [5.9.2] zuläßt, bezeichnet man gerne als Teleskopreihe.
Der letzte Punkt zeigt, dass man Reihen als eine andere Darstellungsform reeller Folgen auffassen darf.
Alle bisher entwickelten Eigenschaften liegen daher für die neu eingeführten Reihen bereits vor! Bei der Konvergenzeigenschaft passen wir die Notation der Reihenschreibweise an.
Definition und Bezeichnung: Ist die Folge konvergent, so sagen wir ist eine konvergente Reihe. Für ihren Grenzwert führen wir ein neues Symbol ein:
|
[5.9.3] |
|
In einem ersten Beispiel ermitteln wir den Grenzwert der geometrischen Reihe aus [5.2.4]. Dies gelingt mit der dort angegeben Summenformel und der Konvergenz aus [5.7.2].
Für jedes q mit ist die geometrische Reihe konvergent gegen
|
[5.9.4] |
Dieses wichtige Ergebnis wird häufig benutzt. So läßt sich etwa die verblüffende Gleichheit exakt begründen:
Dieses Beispiel gibt für die Zahl 1 eine Dezimaldarstellung an, d.h. eine Zifferndarstellung bzgl. der Basis 10. Mit [5.9.4] können wir nun für jede natürliche Basis sicherstellen, dass alle reellen Zahlen eine Zifferndarstellung bezüglich g, eine sog. g-al Darstellung besitzen.
Bemerkung (g-al Darstellung reeller Zahlen): Für eine fest gewählte Basis nennen wir
die Ziffernmenge oder den Ziffernvorrat des g-al Systems. In einem g-al System gibt
es zu jedem ein und eine Folge , so dass
|
[5.9.5] |
Wir verwenden das Symbol
als Abkürzung für diese Darstellung.
Der ► Beweis enthält ein konstruktives Verfahren zur Errechnung der Ziffernfolge.
|
Beachte:
Wie das Beispiel im Anschluss an [5.9.4] zeigt, ist die Darstellung in [5.9.5] nicht eindeutig.
Wir verwenden die klassischen Symbole 0,1,2,3,4,5,6,7,8,9 zur Notation der ersten zehn Ziffernmengen, also z.B.
für das Dualsystem
für das Dezimalsystem
Bei anderen Ziffernmengen werden meist Großbuchstaben als weitere Ziffernsymbole benutzt. Gebräuchlich ist etwa
-
für das Hexadezimalsystem
Ein weiteres Beispiel stellt eine klassische divergente Reihe vor, die sog. harmonische Reihe.
Beispiel:
- Die harmonische Reihe ist divergent.
|
[5.9.6] |
Beweis: kann keine Cauchy-Folge - also auch nicht konvergent - sein, denn für alle n gilt:
|
Konvergente Reihen besitzen alle Eigenschaften, die den "gewöhnlichen" konvergenten reellen Folgen zukommen. So gilt z.B. das Cauchy-Kriterium,
konvergent ist eine Cauchy-Folge,
|
[5.9.7] |
ein Kriterium, das wir bei der Reihenrechnung häufig benutzen werden. Andere Eigenschaften dagegen sind reihenspezifisch, wie etwa die wichtigen Konvergenzkriterien am Ende dieses Abschnitts.
Wir beginnen mit einigen einfachen Bemerkungen und setzen dabei bereits das Cauchy-Kriterium ein.
Bemerkung:
- konvergent
konvergent.
|
[5.9.8] |
- konvergent
|
[5.9.9] |
Beweis:
1. ►
|
Für hat man:
Also ist genau dann eine Cauchy-Folge, wenn eine Cauchy-Folge ist. Nach [5.9.7] ist das die Behauptung.
|
2. ►
|
Sei vorgegeben. Da eine Cauchy-Folge ist, gibt es ein , so dass
Mit ist daher für alle .
|
|
Beachte:
[5.9.8] ist eine Parallele zu [5.4.10]. Anders als dort sind jedoch die Grenzwerte im allgemeinen verschieden:
[5.9.9] ist notwendiges Kriterium für die die Konvergenz einer Reihe. Das Beispiel [5.9.6]
zeigt jedoch, dass dieses Kriterium nicht umkehrbar ist.
Eine weitere Besonderheit betrifft Reihen mit nur positiven Summanden. Eine solche Reihe ist stets eine monoton wachsende Folge. Man hat daher in diesem Fall ein einfaches, aber wichtiges Konvergenzkriterium:
Ist eine Folge in , so gilt
ist konvergent ist beschränkt
|
[5.9.10] |
Mit Blick auf dieses Verhalten führt man bei Reihen einen zweiten Konvergenzbegriff ein.
Definition:
heißt absolut konvergent, falls
eine konvergente Reihe ist.
|
[5.9.11]
|
|
Der neue Konvergenzbegriff ist eine Verschärfung des alten. Denn einerseits zeigt die nachfolgende Bemerkung, dass jede absolut konvergente Reihe auch konvergent ist, andererseits aber gibt es konvergente Reihen,
die nicht absolut konvergieren. Ein Standardbeispiel ist die alternierende harmonische Reihe.
Beispiel: Die alternierende harmonische Reihe
-
|
[5.9.12] |
ist konvergent, aber nicht absolut konvergent.
Beweis: Wir zerlegen die alternierende harmonische Reihe in die Summe zweier konvergenter Folgen. Setzt man für
so ist offensichtlich Da , konvergiert gemäß Schachtelsatz [5.5.8] (gegen 0).
Zum Nachweis der Konvergenz von beachte man, dass der obere Summationsindex immer ungerade ist, die Folgenglieder sind also stets von der Form
.
Da alle Summanden positiv sind, ist die Folge monoton wachsend. Ihre Konvergenz folgt also bereits aus der Beschränktheit. Wir benutzen dazu den Teleskoptrick wie in [5.9.2]:
.
Die Reihe ist die harmonische Reihe, also divergent gemäß [5.9.6].
|
Bemerkung: Ist absolut konvergent, so ist auch konvergent. Dabei gilt
|
[5.9.13] |
Beweis: Wir setzen zweimal das Cauchy-Kriterium ein und benutzen dabei die Dreiecksungleichung. Da eine Cauchy-Folge ist, gibt es zu ein , so dass
für alle Damit ist ebenfalls eine Cauchy-Folge, also konvergent. Zur Abschätzung [5.9.13] betrachten wir die für alle Folgenglieder gültige Ungleichung
Mit [5.5.2] erhält man daraus , also die Behauptung.
|
Konvergenzuntersuchungen von Reihen sind meist schwierig, insbesondere wenn es um die Ermittlung des Grenzwerts geht.
Allerdings gibt es eine Reihe von Kriterien, wie etwa das Cauchy-Kriterium, die zumindest die Konvergenzeigenschaft garantieren. Wir stellen die wichtigsten in der folgenden Bemerkung zusammen.
Bemerkung: und seien zwei Folgen und . Dann gilt das
-
Beschränktheitskriterium:
Ist beschränkt, so ist konvergent.
|
[5.9.14] |
-
Majorantenkriterium:
Gilt und ist konvergent, so ist konvergent.
|
[5.9.15] |
-
Quotientenkriterium:
Ist , so ist konvergent.
|
[5.9.16] |
-
Wurzelkriterium:
Ist , so ist konvergent.
|
[5.9.17] |
Beweis:
1. ►
|
Mit folgt die Behauptung direkt aus [5.9.10].
|
2. ►
|
Nach Voraussetzung müssen alle positiv sein, die konvergente Folge ist daher monoton wachsend, also hat man
,
so dass die Behauptung aus dem Beschränktheitskriterium folgt.
|
3. ►
|
Gemäß Voraussetzung ist . Eine kleine Induktionsüberlegung sichert für alle i die Abschätzung
Da nach [5.9.4] die geometrische Reihe konvergiert, folgt die Behauptung aus dem Majorantenkriterium.
|
4. ►
|
Wir können wieder mit der geometrischen Reihe argumentieren, denn hier ergibt die Voraussetzung sofort: .
|
|
Beachte:
Mit dem folgenden Beispiel zum Quotientenkriterium gewinnen wir drei wichtige Grundfunktionen der Analysis, die Exponentialfunktion sowie den Sinus und den Cosinus.
Beispiel und Definition: Für jedes sind die Reihen , und konvergent.
Die Funktion , gegeben durch
|
[5.9.18] |
heißt die Exponentialfunktion.
-
Die Funktion , gegeben durch
|
[5.9.19] |
heißt der Sinus bzw. die Sinusfunktion.
-
Die Funktion , gegeben durch
|
[5.9.20] |
heißt der Cosinus bzw. die Cosinusfunktion.
Beweis:
1. ►
|
Für ist nichts zu zeigen, für setzen wir das Quotientenkriterium [5.9.16] ein und wählen dazu ein mit (Beachte: ist unbeschränkt in ). Damit gilt für alle :
.
Mit ist daher das Quotientenkriterium (zumindest ab k) erfüllt.
|
2. ►
|
Da folgt die Konvergenz der Sinusreihe mit dem Beschränktheitskriterium [5.9.14].
Die Cosinusreihe erfüllt diesselbe Abschätzung, ist also ebenfalls konvergent.
|
|
Beachte:
Die Berechnung von Funktionswerten ist bei diesen Funktionen natürlich außerordentlich schwierig. Direkt gelingt dies nur im Punkt 0,
denn hier sind, bis auf den ersten, alle Summanden gleich Null. Man hat also:
,
und
Bei der Exponentialfunktion können wir einen weiteren Funktionswert berechnen:
|
[5.9.21] |
Beweis: Zu zeigen ist also (siehe [5.7.7]):
.
-
Das allgemeine Binomialtheorem [5.2.5] erlaubt für alle die Abschätzung
Man weiß daher zunächst: .
-
Sei jetzt fest gewählt. Für alle schätzen wir nun nach unten ab:
Diese Abschätzung bleibt auch für den Grenzwert gültig, man hat also für alle m:
.
Damit gilt dann auch: .
Mit dieser neuen Darstellung der Eulerschen Zahl e können wir zwei in 5.7 gemachte Zusagen einlösen:
-
-
Wir haben eine schnellere Approximationsmöglichkeit für e gefunden, denn die Folge sichert bereits
Über [5.9.21] hinaus läßt sich für alle sogar die Gleichheit beweisen. Näheres dazu in [8.8.26].
In der Integralrechnung werden wir einen weiteren Zugang zur Exponentialfunktion finden. Dort werden wir sie intensiver studieren und ihre Bedeutung, insbesondere im Anwendungsbereich, besser erkennen können.
|
|
|